skip to main content


Search for: All records

Creators/Authors contains: "Vakakis, Alexander F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonlinear micro-electro-mechanical systems (MEMS) resonators open new opportunities in sensing and signal manipulation compared to their linear counterparts by enabling frequency tuning and increased bandwidth. Here, we design, fabricate and study drumhead resonators exhibiting strongly nonlinear dynamics and develop a reduced order model (ROM) to capture their response accurately. The resonators undergo electrostatically-mediated thermoelastic buckling, which tunes their natural frequency from 4.7 to 11.3 MHz, a factor of 2.4× tunability. Moreover, the imposed buckling switches the nonlinearity of the resonators between purely stiffening, purely softening, and even softening-to-stiffening. Accessing these exotic dynamics requires precise control of the temperature and the DC electrostatic forces near the resonator’s critical-buckling point. To explain the observed tunability, we develop a one-dimensional physics-based ROM that predicts the linear and nonlinear response of the fundamental bending mode of these drumhead resonators. The ROM captures the dynamic effects of the internal stresses resulting from three sources: The residual stresses from the fabrication process, the mismatch in thermal expansion between the constituent layers, and lastly, the applied electrostatic forces. The novel ROM developed in this article not only replicates the observed tunability of linear (within 5.5 % error) and nonlinear responses even near the states of critical buckling but also provides insightful intuition on the interplay among the softening and stiffening, which is invaluable for the precise design of similar devices. This remarkable nonlinear and large tunability of the natural frequency are valuable features for on-chip acoustic devices in broad applications such as signal manipulation, filtering, and MEMS waveguides. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Traumatic brain injury (TBI) is often associated with microstructural tissue damage in the brain, which results from its complex biomechanical behavior. Recent studies have shown that the deep white matter (WM) region of the human brain is susceptible to being damaged due to strain localization in that region. Motivated by these studies, in this paper, we propose a geometrically nonlinear dynamical reduced order model (ROM) to model and study the dynamics of the deep WM region of the human brain under coronal excitation. In this model, the brain hemispheres were modeled as lumped masses connected via viscoelastic links, resembling the geometry of the corpus callosum (CC). Employing system identification techniques, we determined the unknown parameters of the ROM, and ensured the accuracy of the ROM by comparing its response against the response of an advanced finite element (FE) model. Next, utilizing modal analysis techniques, we determined the energy distribution among the governing modes of vibration of the ROM and concluded that the demonstrated nonlinear behavior of the FE model might be predominantly due to the special geometry of the brain deep WM region. Furthermore, we observed that, for sufficiently high input energies, high frequency harmonics at approximately 45 Hz, were generated in the response of the CC, which, in turn, are associated with high-frequency oscillations of the CC. Such harmonics might potentially lead to strain localization in the CC. This work is a step toward understanding the brain dynamics during traumatic injury. 
    more » « less